RodDNA (**Rod D**esign aNd Analysis)

We all like our tools, toys, and amusements. Rodmakers are suckers for new tools and toys. Rodmakers are also easily amused by waving a simple stick (a.k.a. Cane Rod) in the middle of a steam. Yet in the simplicity of that stick lays untold truths. It is that search of those truths that begins a journey that many rodmakers never finish. That truth is the taper. Tapers! What makes a good taper? Analyzing a taper! How to make a better taper? Tweak the taper! Converting a beloved taper yet retaining its beauty. Issues that haunt rodmakers.

Consider Garrison working out his stress curves in a hospital bed using only his slide rule (surely you remember them – if not just substitute a handy dandy scientific calculator) and then plotting the resultant stress curve on graph paper. Only the really dedicated engineer needs to try this. Forgive me Lord I have sinned. Oh no, not manual calculations! Help!

Now let me use Wayne Cattanach's HEXROD or one of the derivatives of it. Much better! But I still feel so limited! Stress curves what do they mean and how do they help me. Confusion still reigns. Stress curves only show that a taper is coherent. It is only a simple tool to analyze a set of numbers but does not yield the holly grail of a perfect taper

It is easy for today's rodmakers to find rods they like – attend enough rodmakers gatherings, cast enough rods, and soon you will be saying "so many tapers, so little time". OK, you finally find a bamboo fly rod that you like. This rod casts like the rod of your dreams. Smooth, responsiveness, and exhibits the power you crave. It is everything that you want in a rod. But it is the wrong length and line weight. Besides, only two sections and you want three. In reality, each rodmaker will pick certain tapers they personally like and enjoy. Now they want to build, "improve", and possibility even "modify" them. This is the crux of the problem. How to change something and still retain what they enjoyed about the original?

The first such program that would let you modify known tapers in a coherent manner was John Bokstrom's set of Controlled Modification DOS programs. However, the "beloved" tapers were John's personal favorites. Not a bad selection, but very limited. John worked the "numbers" by hand. His program was especially useful, if you like Garrison. (Editorial Note – Never underestimate the Garrison tapers – latter you will find out why!)

Now comes RodDNA. This has been a joint project with Larry Tusoni spearheading the effort. He first developed what turned out to be the foundation upon which current program's capabilities were built.

I had been working with John Bokstrom to put a modern interface upon his Control Modification (CM) programs. I understood the principles behind the program due to lengthy emails and conversations with John. The crux of the problem was to solve how to automatically characterize the data set for a new taper. John had used manual methods to get the original data sets in his programs. I figured out that techniques applicable to Digital Signal Processing (DSP) could be applied to developing the data sets. Over sampling the taper was the key – sample far more points and the determent. This was the key we needed.

Larry had already developed a rod design & database program written in Java. Java is a potable computer language across Operating Systems. I had been using Visual Basic that wasn't. Larry already had sophisticated display and graphing capabilities incorporated that I would have struggled to implement. Larry is a proficient programmer and I wasn't. I had mastered CM and Larry had yet to understand its concepts. At the Corbett Lake Gathering in April 2004 we (John Bokstrom, Larry Tusoni, and myself) sat down and mapped out a development strategy for what turned out to be RodDNA. Larry was the programmer I have been his Beta tester and John remains the sage.

The philosophy of the program is to provide in one package all the tools capability a rodmaker will require to store, analyze, and modify a taper. This includes the capability to access existing documented tapers (data base of 445 plus tapers) and add new tapers – even at irregular intervals.

So in a nutshell, what important capabilities RodDNA provide?

RodDNA provides the capability to:

- Maintain a rod, customer, vendor, and taper (model) databases
- Sort and display the taper database on desired fields
- Input new tapers (regular or irregular measurement spacing)
- Print the taper and rod planning form setting reports
- Access and display selected taper(s) (single or multiple tapers) dimensions in tabular or graph form
- Calculate and display selected taper(s) (single or multiple tapers) stress curve in tabular or graph form
- Switch between above displays and data base information
- Convert selected a taper from Hex to Quad or Penta and vice-a-versa
- Convert selected a taper from 2-piece to 3 or 4 (even more) while maintaining the same stress curve and vice-a-versa
- Modify the fly rod length, line weight, and action of a selected taper using John Bokstrom's CM
- Automatically calculate the tip top and ferrule sizes for a selected taper(s)
- Automatically calculate guide spacing
- Input user defined default values

Now, Let look at each the above capabilities RodDNA and what they mean to today's rodmaker.

// Short Para describing each bullet above with screen captures //

Maintain a rod, customer, vendor, and taper (model) database.

Actually you can maintain four separate databases with RodDNA. You can maintain information on your sources (vendors), your customers, and the rods you have built. These capabilities are fairly straightforward and provide a useful tool. The display of the information is not as good as Joe Byrd's rodmakers database program. Below is the top level window with the pull down for the various database modules.

The real gem in this program is the Models Database module. There is nothing close to the capabilities exhibited by this module anywhere. When you download RodDNA it comes populated with 445 tapers. You can choose to use them all, some of them, or start a new database all together. You can choose any of these to load into RodDNA on startup. I have a separate database for all my production tapers.

When you click on a taper a taper or tapers it will display the name of the selected taper, the comments pertaining to that taper, and resultant stress curve and dimension plot in two preview windows:

lodel	s Values	Compare Values	Details	Chart	Controlled	d Modification		
ID#		Name	[]	Lengthinch	ActLngInch	Туре	Const Type	Line Weig
' i	Barnes Four S	Sider 7052		84		Fly-Rod	Quad	1
	Bernard 7352			75	65	Fly-Rod	Hex	
	Bernard 7643			90	80	Fly-Rod	Hex	
0	Bernard 7652			90	80	Fly-Rod	Hex	
1	Bogart Bluerid	lge Banty Rod		59	49	Fly-Rod	Hex	
2	Bogart Classi	c Wet Fly Rod		102	92	Fly-Rod	Hex	
3	Bogart JJ Rod			84	74	Fly-Rod	Hex	
4	Bogart Shenai	ndoah Special		114	104	Fly-Rod	Hex	
5	Bogart Shenai	ndoah Supreme Part 1		90	80	Fly-Rod	Hex	
6	Bogart Shenai	ndoah Supreme Part 2	2	90	80	Fly-Rod	Hex	
7	Bogart Shenai	ndoah Sweetheart		84	74	Fly-Rod	Hex	
8	Bogart Yellow	Rose 7022		84	74	Fly-Rod	Hex	
9	Bogart Yellow	Rose 7023		84	74	Fly-Rod	Hex	
:0	Bogart Yellow		84	74	Fly-Rod	Hex		
!1	Bokstrom 908		108	98	Fly-Rod	Hex		
2	Bowles 7042 /	Accidental 4		84	74	Fly-Rod	Hex	
3	Brampton "Joe	e Frosť' Tonga		113	103	Fly-Rod	Hex	
4	Brampton Wal	lker Special		120	110	Fly-Rod	Hex	
5	Bristol 8663 F	7		102	89	Fly-Rod	Hex	
s my ame	s an excellent f Shenandoah d it after my sig	Yellow Rose 7022 7' 0 taper for a 7' 2/3 wt roc Lite and is now called gnature fly shown on n Pink! silk wraps with ye	This st Yellow ny home	arted out Rose". I pare and	Rod	esses Stress Curve Chart	To 100 100 100 100 100 100 100 100 100 10	nension Chart

Sort and display the taper databases on desired fields.

This is a handy feature allows you to reorder the database by a simple click on the field header. This will produce a little arrow indicating you have sorted on it. Latter you can choose to keep the database saved in the sorted order or not. The following example is the database sorted by length.

odels Values Compare Values I	vetails Chart C	ontrolled Modification		
Name	Lengthinch A	ActLngInch Type	Const Type	Line V
Leonard 7' 3 pc 4wt	84	· · · ·	Hex	
Leonard Catskill 38L	84		Hex	
Leonard Catskill	84		Hex	
Maulucci 74 Quad	84	74 Fly-Rod	Quad	
Maulucci Spring Brook Quadrate	84	74 Fly-Rod	Quad	
Nunley 704 Quad	84	74 Fly-Rod	Quad	
Orvis 7' 3 wt.	84	74 Fly-Rod	Hex	
Orvis 7' 3pc 4wt	84	74 Fly-Rod	Hex	
Orvis Battenkilll 7' 4 wt.	84	74 Fly-Rod	Hex	
Payne 98 rod 1	84		Hex	
Payne 98 rod 2	84	74 Fly-Rod	Hex	
Phillipson Peerless 7'	84		Hex	
PHY 8' 2pc 6wt	84		Hex	
PHY JJ's Rod	84		Hex	
PHY Para 14	84		Hex	
PHY Para 15 7' 4 wt	84		Hex	
PHY Perfectionist 7'	84	· · ·	Hex	
PHY Princess	84		Hex	
Powell 7342	84	74 Fly-Rod	Hex	
Garrison 212E 8' 0" 6wt 2	'n			•
5 tiptop	P			

Input new tapers (regular or irregular measurement spacing)

You can keep adding tapers to the database. There is also the capability to import tapers inform other programs (HEXROD and Joe Byrd's Rodmakers Database) and also in plain text.

🗱 Me	odels M	odule										
File	Edit P	rint Be	weler/Mi	ill Tools	Import	Help						
Mod	leis 🖓	Values	Comp	are Value:	Import	.TPR File(s	s)		ifi	ication		
					Import	TaperData	aExch	ange File(s)			
		Dimon	cione &	Stresses	Import	Generic T	aper F	ile(s)	d	e Spacing &	Sizo	ic .
St	Value		elta	500500			Gu	Position	Size			
0	0.0000			🖲 Din	nensions	;	1	4		4		Save Edits
	0.0000			🔷 🔿 Str	esses		2	9		9	3935	Clear Values
	0.0000					_	3	15		15	0000	
	0.0000			Sav	/e Edits		4 5	21.5 28.5		21 1/2 28 1/2	1000	Reload Values
	0.0000			Dala	ad Value		5 6	20.5		36 1/2	1000	
	0.0000			Reio	au value	5	7	45.5		45 1/2	39995	Load Defaults
	0.0000			Calcula	ate Stres	ses	8	55.5	10	55 1/2	10100	
	0.0000			I			9	0		0	0000	
	0.0000										10100	
	0.0000										39993	
	0.0000											
65	0.0000	0.00	00								399	
	0.0000											
	0.0000											
80	0.0000	0.00	00									
											Ţ	
I											-	

Print the taper and rod planning form setting reports

Printing reports are easy. The downside is that you have little control over the format. The format is useful but I personally find that printing both metric and inch planing form settings confuses things when you are only interested in one. However they are easy to read.

Tion Zoom Help Intervention of the second sec	ning F	orm Se	ettings Re	eport - P	rint Prev	riew				
Planing Form Settings For 'Bogart Yellow Rose 7022'' (Station Multiplier = 1.0 Station Bias = 0.0) Tp 0.070 106 68 Centimeters Incernent Rod Dim Form Depth Tp 0.070 420 Inches Incernent Rod Dim Form Depth 1 0.0 0.1575 0.0707 1 0.0 0.0620 0.0340 2 12.7 0.1775 0.0707 1 0.0 0.0620 0.0340 3 25.4 0.2235 0.1118 3 10.0 0.0680 0.0440 4 30.1 0.2251 0.1425 4 15.0 0.1200 0.0580 5 50.8 0.2946 0.1473 5 20.0 0.1460 0.0580 6 63.5 0.3210 0.1626 6 25.0 0.1500 0.0750 9 101.6 0.4216 0.2108 9 40.0 0.1660 0.0830 10 114.3 0.4572 0.2286 10 45.0 0.1600 0.0930 Station # Internet Rod Dim Form Depth Internet Rod Dim Form Depth	lavigati	ion <u>Z</u> a	om <u>H</u> elp	p						
Planing Form Settings For 'Bogart Yellow Rose 7022'' (Station Multiplier = 1.0 Station Bias = 0.0) Tp 0.070 106 68 Centimeters Incernent Rod Dim Form Depth Tp 0.070 420 Inches Incernent Rod Dim Form Depth 1 0.0 0.1575 0.0707 1 0.0 0.0620 0.0340 2 12.7 0.1775 0.0707 1 0.0 0.0620 0.0340 3 25.4 0.2235 0.1118 3 10.0 0.0680 0.0440 4 30.1 0.2251 0.1425 4 15.0 0.1200 0.0580 5 50.8 0.2946 0.1473 5 20.0 0.1460 0.0580 6 63.5 0.3210 0.1626 6 25.0 0.1500 0.0750 9 101.6 0.4216 0.2108 9 40.0 0.1660 0.0830 10 114.3 0.4572 0.2286 10 45.0 0.1600 0.0930 Station # Internet Rod Dim Form Depth Internet Rod Dim Form Depth	-				~ ~		ĩ			
Station Hultiplier = 1.0 Station Bias = 0.0) Station # Tip 0.0 To 420 Inches Fucement To 0.0 to 420 Inches Fucement To 0.0 to 420 Inches Fucement 1 0.0 0.1575 0.0787 1 0.0 0.0620 0.0310 2 12.7 0.1727 0.0664 2 5.0 0.0660 0.0340 3 25.4 0.2235 0.1118 3 10.0 0.0680 0.0440 4 38.1 0.2591 0.1295 4 15.0 0.1020 0.0510 5 50.8 0.25946 0.1473 5 20.0 0.1160 0.0580 6 63.5 0.3251 0.1626 6 25.0 0.1280 0.0640 7 76.2 0.3556 0.1778 7 30.0 0.1400 0.0700 8 8.9 0.3810 0.1905 8 35.0 0.1660 0.0830 10 14.3 0.4572 0.2206 10 45.0 0.1800 0.0900			$\langle \rangle$	>>>	±	100 % 🔻				
Station Hultiplier = 1.0 Station Bias = 0.0) Station # Tip 0.0 To 420 Inches Fucement To 0.0 to 420 Inches Fucement To 0.0 to 420 Inches Fucement 1 0.0 0.1575 0.0787 1 0.0 0.0620 0.0310 2 12.7 0.1727 0.0664 2 5.0 0.0660 0.0340 3 25.4 0.2235 0.1118 3 10.0 0.0680 0.0440 4 38.1 0.2591 0.1295 4 15.0 0.1020 0.0510 5 50.8 0.25946 0.1473 5 20.0 0.1160 0.0580 6 63.5 0.3251 0.1626 6 25.0 0.1280 0.0640 7 76.2 0.3556 0.1778 7 30.0 0.1400 0.0700 8 8.9 0.3810 0.1905 8 35.0 0.1660 0.0830 10 14.3 0.4572 0.2206 10 45.0 0.1800 0.0900						,				
Station Hultiplier = 1.0 Station Bias = 0.0) Station # Tip 0.0 To 420 Inches Fucement To 0.0 to 420 Inches Fucement To 0.0 to 420 Inches Fucement 1 0.0 0.1575 0.0787 1 0.0 0.0620 0.0310 2 12.7 0.1727 0.0664 2 5.0 0.0660 0.0340 3 25.4 0.2235 0.1118 3 10.0 0.0680 0.0440 4 38.1 0.2591 0.1295 4 15.0 0.1020 0.0510 5 50.8 0.25946 0.1473 5 20.0 0.1160 0.0580 6 63.5 0.3251 0.1626 6 25.0 0.1280 0.0640 7 76.2 0.3556 0.1778 7 30.0 0.1400 0.0700 8 8.9 0.3810 0.1905 8 35.0 0.1660 0.0830 10 14.3 0.4572 0.2206 10 45.0 0.1800 0.0900										
Station Hultiplier = 1.0 Station Bias = 0.0) Station # Tip 0.0 To 420 Inches Fucement To 0.0 to 420 Inches Fucement To 0.0 to 420 Inches Fucement 1 0.0 0.1575 0.0787 1 0.0 0.0620 0.0310 2 12.7 0.1727 0.0664 2 5.0 0.0660 0.0340 3 25.4 0.2235 0.1118 3 10.0 0.0680 0.0440 4 38.1 0.2591 0.1295 4 15.0 0.1020 0.0510 5 50.8 0.25946 0.1473 5 20.0 0.1160 0.0580 6 63.5 0.3251 0.1626 6 25.0 0.1280 0.0640 7 76.2 0.3556 0.1778 7 30.0 0.1400 0.0700 8 8.9 0.3810 0.1905 8 35.0 0.1660 0.0830 10 14.3 0.4572 0.2206 10 45.0 0.1800 0.0900										
Station Hultiplier = 1.0 Station Bias = 0.0) Station # Tip 0.0 To 420 Inches Fucement To 0.0 to 420 Inches Fucement To 0.0 to 420 Inches Fucement 1 0.0 0.1575 0.0787 1 0.0 0.0620 0.0310 2 12.7 0.1727 0.0664 2 5.0 0.0660 0.0340 3 25.4 0.2235 0.1118 3 10.0 0.0680 0.0440 4 38.1 0.2591 0.1295 4 15.0 0.1020 0.0510 5 50.8 0.25946 0.1473 5 20.0 0.1160 0.0580 6 63.5 0.3251 0.1626 6 25.0 0.1280 0.0640 7 76.2 0.3556 0.1778 7 30.0 0.1400 0.0700 8 8.9 0.3810 0.1905 8 35.0 0.1660 0.0830 10 14.3 0.4572 0.2206 10 45.0 0.1800 0.0900										
Station Hultiplier = 1.0 Station Bias = 0.0) Station # Tip 0.0 To 420 Inches Fucement To 0.0 to 420 Inches Fucement To 0.0 to 420 Inches Fucement 1 0.0 0.1575 0.0787 1 0.0 0.0620 0.0310 2 12.7 0.1727 0.0664 2 5.0 0.0660 0.0340 3 25.4 0.2235 0.1118 3 10.0 0.0680 0.0440 4 38.1 0.2591 0.1295 4 15.0 0.1020 0.0510 5 50.8 0.25946 0.1473 5 20.0 0.1160 0.0580 6 63.5 0.3251 0.1626 6 25.0 0.1280 0.0640 7 76.2 0.3556 0.1778 7 30.0 0.1400 0.0700 8 8.9 0.3810 0.1905 8 35.0 0.1660 0.0830 10 14.3 0.4572 0.2206 10 45.0 0.1800 0.0900										
Station Hultiplier = 1.0 Station Bias = 0.0) Station # Tip 0.0 To 420 Inches Fucement To 0.0 to 420 Inches Fucement To 0.0 to 420 Inches Fucement 1 0.0 0.1575 0.0787 1 0.0 0.0620 0.0310 2 12.7 0.1727 0.0664 2 5.0 0.0660 0.0340 3 25.4 0.2235 0.1118 3 10.0 0.0680 0.0440 4 38.1 0.2591 0.1295 4 15.0 0.1020 0.0510 5 50.8 0.25946 0.1473 5 20.0 0.1160 0.0580 6 63.5 0.3251 0.1626 6 25.0 0.1280 0.0640 7 76.2 0.3556 0.1778 7 30.0 0.1400 0.0700 8 8.9 0.3810 0.1905 8 35.0 0.1660 0.0830 10 14.3 0.4572 0.2206 10 45.0 0.1800 0.0900			Pla	ning For	m Settin	rs For 'Bog	art Vollos	w Roso 7	022"	
Tip 0.0 To 106.68 Certimeters Tip 0.0 To 420 Inches Station # For one and the second			1 14	(Stat	ion Mult	in lier = 1.0 \$	tation B	ias = 0.0)	
Station # Intrement Red Dim Form Depth Station # Intrement Red Dim Form Depth 1 0.0 0.1575 0.0787 1 0.0 0.0620 0.0310 2 12.7 0.1727 0.0864 2 5.0 0.0680 0.0340 3 25.4 0.2235 0.1118 3 10.0 0.0880 0.0440 4 38.1 0.2591 0.1295 4 15.0 0.1020 0.0510 5 50.8 0.2946 0.1473 5 20.0 0.1400 0.0700 6 63.5 0.3251 0.1626 6 25.0 0.1200 0.0640 7 76.2 0.3556 0.1778 7 30.0 0.1400 0.0700 8 80.9 0.3010 0.1905 8 35.0 0.1800 0.0830 10 11.3 0.4572 0.2286 10 45.0 0.1800 0.0750 2 <td< th=""><th></th><th></th><th></th><th></th><th></th><th>T</th><th></th><th></th><th>, ,</th><th></th></td<>						T			, ,	
L 0.0 0.1575 0.0787 1 0.0 0.0620 0.0310 2 12.7 0.1727 0.0864 2 5.0 0.0680 0.0340 3 25.4 0.2235 0.1118 3 10.0 0.0880 0.0440 4 36.1 0.2591 0.1295 4 15.0 0.1020 0.0510 5 50.8 0.2591 0.1626 6 25.0 0.1280 0.0640 7 76.2 0.3556 0.1778 7 30.0 0.1400 0.0700 8 86.9 0.3210 0.1905 8 35.0 0.1560 0.0830 10 11.4 0.4572 0.2286 10 45.0 0.1860 0.0900 Staion # Hatt 106.8 C 213 36 Centimeters Staion # Batt 42.0 Rob Dim Form Bepfh 1 80.9 0.3010 0.1905 1 25.0 0.1660 0.0830 2 <t< th=""><th></th><th>Station #</th><th></th><th></th><th>neters Form Dept</th><th>h</th><th>Station #</th><th>Tip 0.0 To Increment</th><th>42.0 Inches Rod Dim</th><th>Form Depth</th></t<>		Station #			neters Form Dept	h	Station #	Tip 0.0 To Increment	42.0 Inches Rod Dim	Form Depth
3 25.4 0.2235 0.1118 3 10.0 0.0880 0.0440 4 36.1 0.2591 0.1295 4 15.0 0.1020 0.0510 5 50.8 0.2946 0.1473 5 20.0 0.1160 0.0880 6 63.5 0.3251 0.1626 6 25.0 0.1280 0.0640 7 76.2 0.3556 0.1778 7 30.0 0.1400 0.0700 8 88.9 0.3810 0.1905 8 35.0 0.1500 0.0750 9 101.6 0.4216 0.2108 9 40.0 0.1660 0.0830 10 114.3 0.4572 0.2286 10 45.0 0.1800 0.0900 Station # Incerned Rod Dim Form Depth 1 86.9 0.3810 0.1905 1 35.0 0.1500 0.0750 2 101.6 0.4216 0.2108 2 40.0 0.1660 0.0830 0.9400 3 114.3 0.4572 0.2286 3										
4 38.1 0.2591 0.1295 4 15.0 0.1020 0.0510 5 50.8 0.2946 0.1473 5 20.0 0.1160 0.0580 6 63.5 0.3251 0.1626 6 25.0 0.1280 0.0640 7 76.2 0.3556 0.1778 7 30.0 0.1400 0.0700 8 80.9 0.3810 0.1905 8 35.0 0.1500 0.0750 9 101.6 0.4216 0.2108 9 40.0 0.1660 0.0830 10 114.3 0.4572 0.2286 10 45.0 0.1800 0.0900 Station# Butt 42.0 To 840 Indes Incerned Rod Dim Form Depth Station# Butt 42.0 To 840 Indes 1 86.9 0.2380 0.1905 1 35.0 0.1500 0.0750 2 101.6 0.4216 0.2108 2 40.0 0.1660 0.0830		2	12.7	0.1727	0.0864		2	5.0	0.0680	0.0340
S 50.8 0.2946 0.1473 5 20.0 0.1160 0.0580 6 63.5 0.3251 0.1626 6 25.0 0.1280 0.0640 7 76.2 0.3556 0.1778 7 30.0 0.1400 0.0700 8 88.9 0.3810 0.1905 8 35.0 0.1500 0.0750 9 101.6 0.4216 0.2108 9 40.0 0.1660 0.0830 10 114.3 0.4572 0.2286 10 45.0 0.1800 0.0900 Station # Intraneat Rod Dim Four Depth Station # Intervent Rod Dim Four Depth 1 86.9 0.3810 0.1905 1 35.0 0.1500 0.0750 2 101.6 0.4216 0.2108 2 40.0 0.1660 0.0830 3 114.3 0.4572 0.2286 3 45.0 0.1800 0.0940 4		3	25.4	0.2235	0.1118		3	10.0	0.0880	0.0440
6 63.5 0.3251 0.1626 6 25.0 0.1280 0.0640 7 76.2 0.3556 0.1778 7 30.0 0.1400 0.0700 8 88.9 0.3810 0.1905 8 35.0 0.1500 0.0750 9 101.6 0.4216 0.2108 9 40.0 0.1660 0.0830 10 114.3 0.4572 0.2286 10 45.0 0.1800 0.0900 Bait 106 68 To 213 36 Certimeters Bait 42.0 To 840 Enclose Facen Depth Station # Bait 42.0 To 840 Enclose Increment Rod Dim Form Depth 1 86.9 0.3810 0.1905 1 35.0 0.1500 0.0750 2 101.6 0.4216 0.2108 2 40.0 0.1660 0.0830 3 114.3 0.4572 0.2286 3 45.0 0.1800 0.0940 5 139.7 0.5182 0.2591 <th></th> <td>4</td> <td>38.1</td> <td>0.2591</td> <td>0.1295</td> <td></td> <td>4</td> <td>15.0</td> <td>0.1020</td> <td>0.0510</td>		4	38.1	0.2591	0.1295		4	15.0	0.1020	0.0510
7 76.2 0.3556 0.1776 7 30.0 0.1400 0.0700 8 88.9 0.3810 0.1905 8 35.0 0.1500 0.0750 9 101.6 0.4216 0.2108 9 40.0 0.1660 0.0830 10 114.3 0.4572 0.2286 10 45.0 0.1800 0.0900 But 106 68 To 213 36 Centimeters Increment Red Dim Form Depth Station # But 42.0 To 840 Inches Increment But 42.0 To 840 Dim Form Depth But 42.0 To 840 Dim Form Depth 1 88.9 0.3810 0.1905 1 35.0 0.1500 0.0750 2 101.6 0.4216 0.2108 2 40.0 0.1660 0.0830 3 114.3 0.4572 0.2286 3 45.0 0.1800 0.0940 4 127.0 0.4775 0.2386 4 50.0 0.1800 0.0940 5 139.		5	50.8	0.2946	0.1473		5	20.0	0.1160	0.0580
8 88.9 0.3810 0.1905 8 35.0 0.1500 0.0750 9 101.6 0.4216 0.2108 9 40.0 0.1660 0.0930 10 114.3 0.4572 0.2286 10 45.0 0.1800 0.0900 Station # Butt 42.076 840 Inchest Increment Red Dim Form Depth 1 88.9 0.3810 0.1905 1 35.0 0.1500 0.0750 2 101.6 0.4216 0.2108 2 40.0 0.1660 0.0830 3 14.3 0.4572 0.2286 3 45.0 0.1800 0.0900 4 127.0 0.4775 0.2388 4 50.0 0.1800 0.0940 5 139.7 0.5182 0.2591 5 55.0 0.2040 0.1020 6 152.4 0.5842 0.2921 7 65.0 0.2300 0.1150 8 177.6 0.										
9 101.6 0.4216 0.2108 9 40.0 0.1660 0.0830 10 114.3 0.4572 0.2286 10 45.0 0.1800 0.0900 But 106 68 To 213 36 Centimeters Increment But 42.0To 840 Inches Increment But 42.0To 840 Inches Increment 5tation # Increment Red Dim Form Depth Station # But 42.0To 840 Inches 1 88.9 0.3810 0.1905 1 35.0 0.1500 0.0750 2 101.6 0.4216 0.2108 2 40.0 0.1660 0.0830 3 114.3 0.4572 0.2286 3 45.0 0.1800 0.0900 4 127.0 0.4775 0.2386 4 50.0 0.1800 0.0940 5 139.7 0.5182 0.2591 5 55.0 0.2120 0.1060 6 152.4 0.5385 0.2692 6 60.0 0.2120 0.1060 7 165.1										
10 114.3 0.4572 0.2286 10 45.0 0.1800 0.0900 Buil 106.68 To 213.36 Centimeters Increment Rod Dim Form Depth Station # Buil 42.0 To 840 Inchest Increment Rod Dim Form Depth 1 86.9 0.2810 0.1905 1 35.0 0.1500 0.0750 2 101.6 0.4216 0.2108 2 40.0 0.1660 0.0830 3 114.3 0.4572 0.2286 3 45.0 0.1800 0.0900 4 127.0 0.4775 0.2386 4 50.0 0.1800 0.0940 5 139.7 0.5182 0.2591 5 55.0 0.2040 0.1020 6 152.4 0.5385 0.2692 6 60.0 0.2200 0.1150 8 177.8 0.6477 0.3238 8 70.0 0.2550 0.1275 9 150.5 0.7112 0.3556 9 75.0 0.2800 0.1400 10										
Butt 106 68 Increment To 213 36 Rod Din Cation terms From Depth Station # Butt 42.0 To Increment 840 Initian Form Depth 1 86.9 0.3810 0.1905 1 35.0 0.1500 0.0750 2 101.6 0.4216 0.2108 2 40.0 0.1660 0.0830 3 114.3 0.4572 0.2286 3 45.0 0.1800 0.0900 4 127.0 0.4775 0.2380 4 50.0 0.1800 0.0940 5 139.7 0.5182 0.2591 5 55.0 0.2040 0.1020 6 152.4 0.5385 0.2692 6 60.0 0.2120 0.1060 7 165.1 0.5842 0.2921 7 65.0 0.2300 0.1150 8 177.8 0.6477 0.3238 8 70.0 0.2800 0.1400 10 203.2 0.7112 0.3556 10 80.0 0.2800 0.1400 <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
Station # Incomment Red Dim Form Depth Station # Incomment Red Dim Form Depth 1 88.9 0.3810 0.1905 1 35.0 0.1500 0.0750 2 101.6 0.4216 0.2108 2 40.0 0.1660 0.0830 3 114.3 0.4572 0.2286 3 45.0 0.1800 0.0900 4 127.0 0.4775 0.2388 4 50.0 0.1800 0.0940 5 139.7 0.5182 0.2591 5 55.0 0.2040 0.1020 6 152.4 0.5385 0.2692 6 60.0 0.2120 0.1060 7 165.1 0.5842 0.2921 7 65.0 0.2300 0.1150 8 177.8 0.6477 0.3238 8 70.0 0.2500 0.1275 9 190.5 0.7112 0.3556 9 75.0 0.2000 0.1400 10		10	114.3	0.4572	0.2286		10	45.0	0.1800	0.0900
Station # Incomment Red Dim Form Depth Station # Incomment Red Dim Form Depth 1 88.9 0.3810 0.1905 1 35.0 0.1500 0.0750 2 101.6 0.4216 0.2108 2 40.0 0.1660 0.0830 3 114.3 0.4572 0.2286 3 45.0 0.1800 0.0900 4 127.0 0.4775 0.2388 4 50.0 0.1800 0.0940 5 139.7 0.5182 0.2591 5 55.0 0.2040 0.1020 6 152.4 0.5385 0.2692 6 60.0 0.2120 0.1060 7 165.1 0.5842 0.2921 7 65.0 0.2300 0.1150 8 177.8 0.6477 0.3238 8 70.0 0.2500 0.1275 9 190.5 0.7112 0.3556 9 75.0 0.2000 0.1400 10			D-# 105 6	0 To 212 26 (*	an timo at any			D.# 42.0T	• 940 Inches	
2 101.6 0.4216 0.2108 2 40.0 0.1860 0.0830 3 114.3 0.4572 0.2286 3 45.0 0.1800 0.0900 4 127.0 0.4775 0.2388 4 50.0 0.1880 0.0940 5 139.7 0.5182 0.2591 5 55.0 0.2040 0.1020 6 152.4 0.5385 0.2692 6 60.0 0.2120 0.1060 7 165.1 0.5842 0.2921 7 65.0 0.2300 0.1150 8 177.8 0.6477 0.3228 8 70.0 0.2550 0.1275 9 190.5 0.7112 0.3556 9 75.0 0.2600 0.1400 10 203.2 0.7112 0.3556 10 80.0 0.2800 0.1400		Station #	Increment			h	Station #		Rod Dim 1	
3 114.3 0.4572 0.2286 3 45.0 0.1800 0.0900 4 127.0 0.4775 0.2388 4 50.0 0.1880 0.0940 5 139.7 0.5182 0.2591 5 55.0 0.2040 0.1020 6 152.4 0.5385 0.2692 6 60.0 0.2120 0.1060 7 165.1 0.5842 0.2921 7 65.0 0.2300 0.1150 8 177.8 0.6477 0.3238 8 70.0 0.2550 0.1275 9 190.5 0.7112 0.3556 9 75.0 0.2600 0.1400 10 203.2 0.7112 0.3556 10 80.0 0.2600 0.1400			88.9	0.3810	0.1905			35.0	0.1500	0.0750
4 127.0 0.4775 0.2388 4 50.0 0.1880 0.0940 5 139.7 0.5182 0.2591 5 55.0 0.2040 0.1020 6 152.4 0.5385 0.2692 6 60.0 0.2120 0.1060 7 165.1 0.5842 0.2921 7 65.0 0.2300 0.1150 8 177.6 0.6477 0.3238 8 70.0 0.2550 0.1275 9 190.5 0.7112 0.3556 9 75.0 0.2600 0.1400 10 203.2 0.7112 0.3556 10 80.0 0.2800 0.1400										
5 139.7 0.5182 0.2591 5 55.0 0.2040 0.1020 6 152.4 0.5385 0.2692 6 60.0 0.2120 0.1060 7 165.1 0.5842 0.2921 7 65.0 0.2300 0.1150 8 177.6 0.6477 0.3236 8 70.0 0.2550 0.1275 9 190.5 0.7112 0.3556 9 75.0 0.2800 0.1400 10 203.2 0.7112 0.3556 10 80.0 0.2800 0.1400										
6 152.4 0.5385 0.2692 6 60.0 0.2120 0.1060 7 165.1 0.5842 0.2921 7 65.0 0.2300 0.1150 8 177.8 0.6477 0.3238 8 70.0 0.2550 0.1275 9 190.5 0.7112 0.3556 9 75.0 0.2800 0.1400 10 203.2 0.7112 0.3556 10 80.0 0.2800 0.1400										
7 165.1 0.5842 0.2921 7 65.0 0.2300 0.1150 8 177.8 0.6477 0.3238 8 70.0 0.2550 0.1275 9 190.5 0.7112 0.3556 9 75.0 0.2800 0.1400 10 203.2 0.7112 0.3556 10 80.0 0.2800 0.1400										
8 177.8 0.6477 0.3238 8 70.0 0.2550 0.1275 9 190.5 0.7112 0.3556 9 75.0 0.2800 0.1400 10 203.2 0.7112 0.3556 10 80.0 0.2800 0.1400										
9 190.5 0.7112 0.3556 9 75.0 0.2800 0.1400 10 203.2 0.7112 0.3556 10 80.0 0.2800 0.1400										
10 203.2 0.7112 0.3556 10 80.0 0.2800 0.1400										
	2		40.		. T			1		
		1.1	🔄 Inbox	for cbogart	@s	🗋 Powerfibe	rs		🗿 Grayling	

Access and display selected taper(s) (single or multiple tapers) dimensions in tabular or graph form.

Simply by using selecting multiple tapers in the models tab (in Windows hold the CTRL key while clicking the mouse – standard windows function) you can select multiple tapers for display.

e Ed				21 /191111	Tools I							
lodel	ls	Values	C C	ompare	Values	Detail	s Cha	rt	Controlle	d Modification		
ID#				Name			Lenathin	nch.	ActLngInch	Type	Const Type	Line Weig
35	Fink	Bill 734	2 Pen	ita				87	77	Fly-Rod	Penta	
36	Fink	Bill 765	2					90	80	Fly-Rod	Penta	
					13'11/2 S	pe	1	57	119	Spey-Rod	Hex	
38	Gari	rison 19	3 (Full	l Length	i Tapers)			81	81	Fly-Rod	Hex	
39	Gari	rison 19	3					81	71	Fly-Rod	Hex	
		rison 20						84		Fly-Rod	Hex	
		rison 20						84		Fly-Rod	Hex	100
42	Gari	rison 20	2E					84	74	Fly-Rod	Hex	
43	Gari	rison 20	4E					87	77	Fly-Rod	Hex	
		rison 20	-					90		Fly-Rod	Hex	
45	Gari	rison 20	9					90	80	Fly-Rod	Hex	
46	Gari	rison 20	9E					93	83	Fly-Rod	Hex	
47	Gari	rison 21	2					96	86	Fly-Rod	Hex	
48	Gari	rison 21	2E					96	86	Fly-Rod	Hex	
49	Gari	rison 21	5				1	02	92	Fly-Rod	Hex	
		rison 22	1 1					05		Fly-Rod	Hex	
		rison Mo						81		Fly-Rod	Hex	
		rison Mo						96		Fly-Rod	Hex	
53	Gari	rison Mo	del 22	21 (e)			1	05	95	Fly-Rod	Hex	
4 333												•
									Rod	esses Stress Curve Chart		Insions Imension Chart 0. 30 40 90 90 70 90 ches from Tip (Connection) Connection Tip (Connection)

Now click on the Compare values Tab and you will see the tapers side by side. I chose the vertical display option in Program options vice horizontal display option. My preference. This is a great analysis tool:

Mode	els Values (Compare Values	Details Cha	irt Controlled i	Vodification
Sta	Garrison 201E	Garrison 202E	Garrison 204E	Garrison 209E	Garrison 212E
0	0.0630	0.0630	0.0630	0.0710	0.0740
5	0.0790	0.0800	0.0810	0.0840	0.0850
- 10	0.0990	0.1000	0.1010	0.1040	0.1060
15	0.1140	0.1160	0.1180	0.1220	0.1240
20	0.1280	0.1300	0.1320	0.1360	0.1380
25	0.1410	0.1430	0.1450	0.1490	0.1520
30	0.1530	0.1550	0.1570	0.1620	0.1650
35	0.1650	0.1670	0.1690	0.1740	0.1770
40	0.1770	0.1790	0.1810	0.1860	0.1890
45	0.1900	0.1920	0.1940	0.1990	0.2020
50	0.2030	0.2040	0.2060	0.2110	0.2140
55	0.2150	0.2160	0.2190	0.2250	0.2280
60	0.2280	0.2290	0.2320	0.2380	0.2410
65	0.2410	0.2420	0.2450	0.2510	0.2540
70	0.2540	0.2560	0.2590	0.2640	0.2670
75	0.2820	0.2870	0.2730	0.2780	0.2810
80	0.2900	0.2950	0.2990	0.2950	0.2960
85	0.0000	0.0000	0.3070	0.3180	0.3300
90	0.0000	0.0000	0.0000	0.3280	0.3400
95	0.0000	0.0000	0.0000	0.0000	0.3400

Now click on the Chart Tab and you will see the results displayed in graphical form:

Note that each taper has its own color making the dimension chart easy to read.

Calculate and display selected taper(s) (single or multiple tapers) stress curve in graph form

Now simply click Chart Models (Stresses) at the bottom of the graph and you will immediate see the stress curves plotted for the selected model(s)

Note that the color code is the same for the dimension plot. You can quickly toggle back to dimensions to database information by clicking on a button or tab.

Convert selected a taper from Hex to Quad or Penta and vice-a-versa

RodDNA has automatic conversion of a taper for 6 to 4 to 5 sided. This feature is extremely easy to use. Simply click on construction type field of a selected taper and a drop down menu selection presents itself.

lode	ls	Values	70	ompare	Values	Details	Chart	Controlle	d Modification		
ID#	E in I	- D/U 20 4/		Name			Lengthinch	ActLngInch	Type	Const Type	Line Weig
		< Bill 734:		nta			87		Fly-Rod	Penta	
		< Bill 765:			0144/0.0		90		Fly-Rod	Penta	
	_	e & Sons				De	157		Spey-Rod	Hex	
		rison 193	· ·	II Length	Tapers)		81		Fly-Rod	Hex	
		rison 193	-				81		Fly-Rod	Hex	
		rison 201					84		Fly-Rod	Hex	
		rison 201					84		Fly-Rod	Hex 🔻	
		rison 202					84		Fly-Rod	Hex	
		rison 204					87		Fly-Rod	Penta	
		rison 200	-				90		Fly-Rod	Quad	
		rison 209	-				90		Fly-Rod	Triple	
		rison 209					93		Fly-Rod	Hex-(Double-Buil	
	_	rison 212					96		Fly-Rod	Hex-(Hollowed)	
		rison 212					96		Fly-Rod	, , ,	
	Garrison 215				102		Fly-Rod	Hex-(Fluted)			
	_	rison 221					105		Fly-Rod	Rectangular	
		rison Mo					81		Fly-Rod	Hex	
		rison Mo					96		Fly-Rod	Hex	
53	Gar	rison Mo	del 2	21 (e)			105	95	Fly-Rod	Hex	
1 200		ŝ.							.		•
tipto	p	0	Garri	son 201E	7'0" 5v	rt 2p			ESSES Stress Curve Chart	10 028 028 028 028 028 028 028 028 028 02	nsion Chart 20 40 10 10 10 10 20 40 10 10 10 10 20 70 20 70

If you select a different type of construction a pop-up window shows up to warn / alert you that you will automatically generate a new taper.

You will then see a new taper with the name annotated with [2] above the old one with the conversion accomplished.

File Edit Print Beve Models Values (
Madala Valuas (ler/Mill Tools Im	iport He	lp					
Models values (Compare Values	Details	Chart	Controlle	d Modification			
ID#	Name	L	engthinch	ActLngInch		Const Type	Line Weig	
135 Fink Bill 7342 Pe	inta		87		Fly-Rod	Penta		
136 Fink Bill 7652			90		Fly-Rod	Penta		
	nstaple 13' 11/2 Sp	e	157		Spey-Rod	Hex		
	III Length Tapers)		81		Fly-Rod	Hex		
139 Garrison 193			81		Fly-Rod	Hex		
140 Garrison 201			84		Fly-Rod	Hex		
141 Garrison 201E[2]			84	74	Fly-Rod	Quad		333
142 Garrison 201E			84	74	Fly-Rod	Hex		
143 Garrison 202E			84	74	Fly-Rod	Hex		
144 Garrison 204E			87	77	Fly-Rod	Hex		
145 Garrison 206			90	80	Fly-Rod	Hex		
146 Garrison 209			90	80	Fly-Rod	Hex		
147 Garrison 209E			93	83	Fly-Rod	Hex		
148 Garrison 212			96	86	Fly-Rod	Hex		
149 Garrison 212E			96	86	Fly-Rod	Hex		
150 Garrison 215			102	92	Fly-Rod	Hex		
151 Garrison 221 (e)			105	95	Fly-Rod	Hex		
152 Garrison Model 1	93		81	71	Fly-Rod	Hex		
153 Garrison Model 2	212		96	86	Fly-Rod	Hex		-
		i			 .	· · ·	•	-
		File "R	odDNAMo	Rod	esses Stress Curve Chart	70 0.28 0.10 0.0	Sions Rension Chart 00 40 80 80 70 From Te Oliversion 2010	

Taper conversion is as easy as that.

Convert selected a taper from 2-piece to 3 or 4 (even more) while maintaining the same stress curve and vice-a-versa

This function is as easy to use as taper conversion. Simply choose a taper and in the "Pieces" field enter the number of sections you want. The conversion is done using stress curves. It takes the original stress curve and using the new number of ferrules and standard location for them, calculates the taper. Again a pop-up window asks if you want to generate a new taper with 3 pieces vice the two you started with. When you answer yes a new taper is inserted above the old one in the database.

Genera	te New "3.0 Piece Rod" Model?	×
S	Click Yes to Generate a new "3.0 Piece Rod" Model	ļ
	Yes No	

Automatically calculate the tip top and ferrule sizes for a selected taper(s) Automatically calculate guide spacing.

Another simple chore for RodDNA, simply select the rod and in the tools menu item select the Calculate ferrule Sizes & position & Tip Top Size and it will update the database entry.

le Edi	t Prin	t Be	eveler/Mill	Tools	Import	Help					
Models	Val	ues	Compare	Valida	ate Mode	els					
	,			Calcu	ılate Ferr	ule Sizes	& Positions &	Tip Top Size			
	st Type		Line Weigl			Sections					Size
Penta									Nor		
Penta		_			current	sort state			Nor		
Hex		_		4		30	30	3 9/04	12/6		
Hex		_		4		30	30	2 11/64			
Hex		_		4		30	30	2 11/64			
Hex				5		30	30	2 12/64			
Quad				5		30	30	2 11/64			
Hex		_		5		30	30	2 12/64			
Hex		_		5		30	30	2 12/64			
Hex		_		4		30	30	2 12/64	Nor		
Hex		_		5		30	30	2 13/64	Nor		
Hex		_		5		30	30	2 13/64	Nor		
Hex		_		5		30	30	2 13/64	Nor		
Hex		_		6		30	30	2 14/64	Nor		
Hex		_		6		30	30	2 14/64			
Hex		_		8		30	30	3 1 4/64			
Hex		_		7		30	30	2 15/64			
Hex				4		30	30	2 11/64			
Hex				6		30	30	2 14/64	Nor	ne None	e NS-
•	333333										•
		G	arrison 201	E 7' 0"	5wt 2p		Ro	tresses d Stress Curve Cha	urt [Dimensio	
4 tiptop							100,00 100,00				Tip (Dimensions)
							IAModels.rdm"	Looded			

Modify the fly rod length, line weight, and action of a selected taper using John Bokstrom's Controlled Modification (CM).

This is one of the real "Power Tools" of this program. This represents complete update and enhancement of John Bokstrom's original DOS BASIC programs. What Controlled Modification (CM) represents is a proven and scientific method that will allow a rodmaker to start with a known taper and make changes to that taper in a systematic manner. I have done testing and I can say that the changes can go either way, in DSP we call this transforms. You will end up with what you started with. No hocus pocus here.

CM first characterizes a taper independent of its length. At the 10 and 60 percent values a line is drawn through the taper. At 1% intervals a data values are calculated of the taper value and its relationship to the line drawn through the two points. This results in 101 data points that represent the taper regardless of its length.

Now for the nay Sayers who say why 10% and 60% - please argue with John Bokstrom who has done the research. I have found that these values do capture the rod action. However, if you want to be dogmatic about it, RodDNA allows you to choose your own values and it will calculate everything based upon them. Just change the values in the lower left hand of the window.

The slope of this line represents the Rod Action Value (RAV). The higher the number the faster the rod, the lower the number the slower the rod is. Changing this number upwards or downwards will quicken or slow the rod. A good general rule to follow is make longer rods slower and shorter rods quicker.

The place where the slope crosses zero is the Line Weight Value (LWV). In most cases this will be different than the taper value at the tiptop. Most tapers play little games here. Now to change the line weight of a rod, simply increase this number. An increase of .005 - .006" will result in one line weight increase. Conversely decrease this number and the line weight will decrease.

To use Controlled Modification simply click on the tab. You will see the dimensions displayed. In the lower right corner you have the rod length, RAV, and LWV displayed.

Now simply change one, two, or all of those numbers and click Generate New Model button. Now you get a pop-up to confirm the action, click yes and a new taper is created and entered in the database above the old one.

Now look at the Compared values:

Sta Garrison 2 0 0.0681 5 0.0830 10 0.1008 15 0.1176 20 0.1311 25 0.1438 30 0.1575 35 0.1687 40 0.1920 50 0.2039 55 0.2180 60 0.2295 65 0.2414 70 0.2541	on 201E[3] Garrison 201E	
0 0.0681 5 0.0830 10 0.1008 15 0.1176 20 0.1311 25 0.1438 30 0.1575 35 0.1687 40 0.1802 45 0.1920 50 0.2039 55 0.2180 60 0.2295 65 0.2414 70 0.2541		
0 0.0681 5 0.0830 10 0.1008 15 0.1176 20 0.1311 25 0.1438 30 0.1575 35 0.1687 40 0.1802 45 0.1920 50 0.2039 55 0.2180 60 0.2295 65 0.2414 70 0.2541		
5 0.0830 10 0.1008 15 0.1176 20 0.1311 25 0.1438 30 0.1575 35 0.1687 40 0.1802 45 0.1920 50 0.2039 55 0.2180 60 0.2295 65 0.2414 70 0.2541	0.0000	
10 0.1008 15 0.1176 20 0.1311 25 0.1438 30 0.1575 35 0.1687 40 0.1802 45 0.1920 50 0.2039 55 0.2180 60 0.2295 65 0.2414 70 0.2541	1 0.0630	
15 0.1176 20 0.1311 25 0.1438 30 0.1575 35 0.1687 40 0.1802 45 0.1920 50 0.2039 55 0.2180 60 0.2295 65 0.2414 70 0.2541	0.0790	
20 0.1311 25 0.1438 30 0.1575 35 0.1687 40 0.1802 45 0.1920 50 0.2039 55 0.2180 60 0.2295 65 0.2414 70 0.2541	8 0.0990	
25 0.1438 30 0.1575 35 0.1687 40 0.1802 45 0.1920 50 0.2039 55 0.2180 60 0.2295 65 0.2414 70 0.2541	6 0.1140	
30 0.1575 35 0.1687 40 0.1802 45 0.1920 50 0.2039 55 0.2180 60 0.2295 65 0.2414 70 0.2541	1 0.1280	
35 0.1687 40 0.1802 45 0.1920 50 0.2039 55 0.2180 60 0.2295 65 0.2414 70 0.2541	8 0.1410	
40 0.1802 45 0.1920 50 0.2039 55 0.2180 60 0.2295 65 0.2414 70 0.2541	5 0.1530	
45 0.1920 50 0.2039 55 0.2180 60 0.2295 65 0.2414 70 0.2541		
50 0.2039 55 0.2180 60 0.2295 65 0.2414 70 0.2541		
55 0.2180 60 0.2295 65 0.2414 70 0.2541	0.1900	
60 0.2295 65 0.2414 70 0.2541	9 0.2030	
65 0.2414 70 0.2541		
70 0.2541	5 0.2280	
	4 0.2410	
	1 0.2540	
75 0.2663	3 0.2820	
80 0.2800	0.2900	
85 0.3074	4 0.0000	
90 0.3170	0.0000	
95 0.3191	1 0.0000	

Then compare the stress curves of the old versus new taper:

In the click of a mouse you have modified an existing taper made it longer, slightly slower and one line weight heavier. Wow!

When I first demonstrated this program I was asked could I make a Payne 101 slightly faster since the rodmaker thought it was a bit wimpy for tastes but like the rod otherwise. Changing the RAV and leaving length and line weight the same; it was accomplished simply and quickly. No second-guessing on how to modify a taper.

Now, start thinking about parlaying RodDNA's capabilities. I just played with the Garrison 201E. I made it longer, slightly slower and one line weight heavier. Nice, but we can now make it a 3-piece rod, or even a Quad! Power at a rodmaker's fingertips!

One last item should be noted. You can have fun with the database all day long and when you go to close you can choose not to save, save with the same name, or chose save as with a new name. This is helpful to keep multiple databases and then load the one you are interested in the next time you use the program. You can also save or load a database from the network (on Larry's server). You can allow other to load a database you have saved – the choice is yours.

Models Modu		s Import Help)				
Load		s Details	Chart Contro	lled Modification			
Save							
Save As		Line Length	Line Cast	Pieces F1Size	F2Size	F3Size	
		30	30	2 13/64	None	None	NS-
Save Selected I	Aodels	30	30	2 9/64	None 12/64	None	NS-
Load From Netv	vork	30	30	3 9/64		None	NS-
Save To Networ	k	30	30	2 11/64	None None	None None	NS-
		30	30	2 12/64	None	None	NS-
save selected r	Nodels to Network	30	30	2 12/04	None	None	NS-
Exit		30	30	2 12/64	None	None	NS-
Hex	5	30	30	2 12/64	None	None	NS-
Hex	4	30	30	2 12/64	None	None	NS-
Hex	5	30	30	2 13/64	None	None	NS-
Hex	5	30	30	2 13/64	None	None	NS-
Hex	5	30	30	2 13/64	None	None	NS-
Hex	6	30	30	2 14/64	None	None	NS-
Hex	6	30	30	2 14/64	None	None	NS-
Hex	8	30	30	3 14/64	17/64	None	NS-
Hex	7	30	30	2 15/64	None	None	NS-
Hex	4	30	30	2 11/64	None	None	NS-
Hex	6	30	30	2 1 4/6 4	None	None	NS-
4 3333333	8						
4 tiptop	Garrison 201E 7' 0'	" 5wt 2p		000		Dimension C Dimension C 20 30 40 80 Indust frame (Dras Cartier 2018)	
		File "Ro	dDNAModels.rdm	" Loaded			

Now let's discuss the Holy Grail for rodmakers – developing a consistent set of tapers having the same basic desired taper and action but in different lengths, number of sections, and line weights. Remember our earlier discussion of Garrison. In using RodDNA you will find that the Garrison Tapers have a consistency across various lengths and line weights. Using the CM feature you will be able to start with one Garrison taper and end up with another. In my presentation at Grayling and also at Roscoe I show how you can start with a Garrison 215 (8' 6" 3 piece 8wt) and end up with a 201 (7' 2 piece 5wt). He was surely the "Master". Other famous rodmakers tapers do not exhibit this consistency across models – not even Paul Young's famous Para Series. He accomplished it by empirical means and Garrison used a proven scientific method. Now is your chance to take your "favorite" rod taper and "clone" it across a range of

lengths, number of sections, and line weights. RodDNA provides the tools for accomplishing this.

In summary, the program is still a "work-in-progress" providing many exciting new capabilities. There are some tricks and tips to using the program effectively that may not be intuitive to some at first. But once mastered, RodDNA provides the modern rodmaker with a software tool that allows him to play and design his beloved toys. RodDNA is a powerful tool that has been sorely missing. The more a rodmaker plays with RodDNA, the more they discover things about tapers they have never observed before. It allows a rodmaker to quickly accomplish things that were near impossible before. Garrison would have loved it. This is the ultimate complement.

RodDNA is available free from: http://www.HighSierraRods.com